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New York City’s Water Supply Challenges:
Water Quality

® NYC has Filtration Avoidance
Determination (FAD) from EPA

for Cat/Del system (2007) e

® Meeting turbidity limits is an d
important requirement for ,1, oy
the water supply Y 5 = ;

= May not deliver water from
Kensico over 5 NTU

® (Catskill system intermittently
affected by turbidity
during/after high flow events

" catskill
Aqueduct




® Per DEC, alum usage must be
minimized/eliminated

® Flexibility in NYC system allows
for reservoir operations
adjustments for effective turb
control

= Essentially minimize turbid
diversions from Ashokan

= Most strategies have a supply
reliability impact




System Flexibility to Manage Turbidity

®  Minimize Catskill diversions

= Make up difference with Delaware or
Croton

= Reduce minimum flow in Catskill Aqg.
with stop shutters

® Increase West Basin ability to capture
storm volume, allow time for turbidity
to settle out, prevent spillage from
West to East
= Create void space in West Basin via

preemptive diversions and/or releases
from ARC

Important to understand

how long an event will affect the
system



* Typically linear regression of o P e ==:
log-transformed turbidity
observations and streamflow : ]
observations
= Occasionally use squared flow as ]
additional term in regression r o e e e
® Generally poor in predicting -
intra and inter-event variability | |
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Can we do Better in Capturing intra/inter-event
Variability?

Like streamflow, turbidity is autocorrelated in time

Current (and future) observations are linearly related to recent past
(time-lagged) observations

Recent past observations may be used to inform (predict) future
observations

Box-Jenkins time series models may be applied instead of/as a
supplement to linear regression models

Autoregressive (AR), Autoregressive Moving Average (ARMA), etc.
Streamflow example:

“Last few months have been dry, this month is likely to be dry,
too”

Physical basis is persistence in baseflow & soil moisture

Apply this principle to turbidity observations



® Rule Curve errors (predicted — observed) are correlated in time due to persistence
in streamflow and turbidity

® Correlated errors can be used as additional predictors in improving skill of rule
curve estimates

C
Linear Regression Part: Y(t) = Z BiXi(t) + u+e(t)
i=1

p q
ARMAETTOrS:  e(t) = » ¢ile(t— i) — ] + ) 6;n(t — i) — ]
e = YT



1) Develop Linear Regression Rule
Curve

® Correlation/scatter plot analysis of
potential predictors

® Fit “best” linear regression model

2) Develop Time Series Model
Component

® Residuals analysis
®* Determine AR and/or MA order

® Fit ARMA model to the linear
regression residuals

Fit appropriate flow-
turbidity rating curve

W

Residuals analysis:

Time series plots, ACF, PACF, EACF

Residuals shiow
trend/patternsin
time?

fes

Yalidate/test model

Select/fit ARMA model
toresiduals
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*Flow (and turbidity) from Shandaken Tunnel
(Schoharie Reservoir) enters Esopus from Northwest
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21 Potential Predictors Considered for
Linear Regression Rule Curve

Log(Watershed Q) and Log(Watershed Q)?

“Watershed Q” = USGS gauge flow at Coldbrook — USGS observed flow at
the Shandaken Tunnel outlet

Calculated flows below 0.1 cfs removed via linear interpolation (9
observations)

Hysteresis effect (based on method in Hirsch, 1988)

Antecedent dry period (ADP)

First Fourier series of the seasonal cycle

USGS observed Shandaken Tunnel Q, log(Shand Q), log(Shand Q)2

DEP Shandaken Tunnel turbidity (interpolated grab data), log(Shand
tn), Shandaken Turb load, log(Shand tn load)
Weighted Shandaken turbidity
(Shandaken tn * Shandaken Q) / Coldbrook Q
“Censored” Shandaken variables (tn, tn load, weighted tn load, and

log transforms)

Shandaken variables set to 0 if they are less than 10 mgd or are less than
20% of total Coldbrook flow
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Correlation Coefficients of Significant Predictors

Predictor Correlation Coefficient
log(Watershed Q) 0.513
log(Watershed Q)2 0.562
Hysteresis 0.426
log(Cens. Shand. Tn) 0.157

log(Cens. Shand. Load) -0.098




V() = D BiXi(®) + i+ e(t)
i=1

Predictor (X) Rating Curve Coefficient (8)
Intercept (u) 3.746
log(Watershed Q) -1.082
log(Watershed Q)2 0.129
Hysteresis 0.581
log(Cens. Shand. Tn) 0.620
log(Cens. Shand. Load) -0.168

°* R? =0.55

®* AIC=4857.40
e
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Selecting a Time Series Model Based on
Rule Curve Error Characteristics

® Sample autocorrelation function (ACF)
= Computes the sample autocorrelation of time series points k units apart
® Sample partial autocorrelation function (PACF)

= Partial autocorrelation (autocorrelation of ACF residuals) at k lags

e NM@‘F ex ‘N s e C u t S

L - Ta i ls ‘W‘\NNHH‘HH\‘HH\‘H}H‘\HH‘\HH‘HH\‘HH\‘HlH‘H““H‘Hw

PACF Cuts off after lag p | Tails off Tails off

*Table from Cryer & Chan, 2008

* Extended autocorrelation function (EACF)

=  Structure shows order or mixed ARMA model

= Diagonal in matrix below reveals AR 1, MA 2 model — ARMA(1,2)

AR/MA
0

[
(=)}

NoOoOu s, WNPR

X X X X X X X X |O
X X X X X X X X
X X X X X X O X |IN
X X X X X O O X |w
X X X X O O O X |+
X X X O O O O X |wn
X X O O O O O X
X O O O O O O X |V
O O O O O O O X |




ACF

Partial ACF

0.8

0.6

0.4

0.2

0.8

06

0.4

0.2

0.0

Full Model Residuals

(; é 1]0 1I5 2[0 2IS SIO
i Both ACF and PACF tail off;
suggests mixed model
“““““ {lllf4 rli.lrrr41‘
_____________________________________________________________ '_________l_____________l__________________l_________'_________-_________|______________
0 : 10 1 2 "



AR/MA

Lag 0 1 2 3 4 5 6 7
0 X X X X X X X X
1 X X 0 0 0 0 0
2 X X 0 0 0 0 0
3 X X 0 0 0
4 X X 0 0 0
5 X X 0 0 0
6 0 X 0 0
7 X X X X X 0 0 0

® EACF’s in real life never as clear as theoretical examples, must use some

judgment

® Diagonal like structure exists with vertex at AR 1, MA 2



Linear Regression Part:

ARMA Errors:
Coefficients:
arl mal ma2 Mean
() (9) (9) (1)

Estimate 0.978 -0.290 -0.155 0.189

(OEDW R ACHY @
i=1

p a
@ =) pileCt—0 -+ ) 6;ln(t— 1) — p]
i=1 i=1

log(Watershed Q) log(Watershed Q)*2  Hysteresis log(Cens Shand tn) log(Cens Shand Load)

-0.130 0.069 0.565 -0.0809 0.0756

® AIC of Rule Curve + Error Model (1410.42) much smaller than
Rule Curve alone (4857.40)
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=+ Linear Regression Model 2
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Rule Curve + Error Model “sees”
continued elevated turbidity in
recent observations;

“Adjusts” turbidity predictions up

**Note that Rule Curve + Error
Model skill eventually decays to
that of original Rule Curve
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fos iy
_|=— AR{4) Model 2 [ . . -
o e | If forecast is issued again, a few
- 5 days after peak, Rule Curve +
1 r Error Model improves
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Conclusions & Next Steps

Adding a time series error model to turbidity rating curves can increase
short term skill of turbidity predictions

Skill is best during falling limb of turbidity event
Largest improvements over traditional rule curves when flow has significantly
regressed but ambient turbidity remains high

Very data intensive!

Requires relatively long and continuous (few gaps!) historical record to
calibrate/fit autoregressive models

Requires active, near real real-time turbidity monitoring and streamflow
forecasts to run operationally

Currently being integrated and tested in NYC’s Operations Support Tool
(OST) to improve turbidity control operations at Ashokan

Luke Wang
lwang@nova-consulting.com
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